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Synopsis 

A simple method is presented for calculating the pressure drop for the flow of power law liquids 
in dies with a wide slit profile and with vertical and/or lateral tapers, as well as in dies with the shape 
of a circular truncated right cone. Tapered dies are known to give improved extrudate quality and/or 
higher output rates without encountering extrudate defects which occur in dies with parallel channels 
at  similar extrusion pressures. A possible ultimate optimization of the extrusion process-as far 
as die design is concerned-is discussed. It is suggested that this be based upon an extension of the 
method from dies with a rectilinear convergent taper to dies with a curvilinearly converging channel 
aspect the generation of which latter is indicated. 

INTRODUCTION 

When extruding polymer melts, the use of tapered dies with taper angles of 
less than loo is found to be beneficial in preventing flow defects at operating 
pressures which are substantially greater than those which would cause serious 
defects in dies with parallel-sided channels. Attention to this has been drawn 
by Cogswell and Lamb' who also gave a mathematical treatment of the problem. 
A similar mathematical treatment has been given by Plajer.2 

The present work gives a more rigorous treatment which is, a t  the same time, 
remarkably simple. 

DERIVATION OF THE PRESSURE DROP EQUATIONS 

We consider four typical and common examples of linearly convergent dies, 
namely: (i) vertically tapered wide-slit dies; (ii) laterally tapered wide-slit dies; 
(iii) wide-slit dies with a vertical as well as a lateral taper; and (iv) dies having 
the shape of a circular truncated right cone. 

Pressure Drop Through a Wide-Slit Die of Constant Width wand with 
a Vertical Taper Angle 6 

A diagram of the geometry is given in Figure 1. It is seen that 

h = H1 = 1 tan 6.  

tan fl = (HI - h)/l = -dh/dl 

d h  = -dl tan 8 

d l  = -dh cot 8. 

In wide-slit dies, 
2 n + 1  6Q Q 4 n + 2  .---.- - 2 n + 1 .  

Yapp = ~ 

i,=- 
3n 3n wh2 wh2 n ' 
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Fig. 1. Median longitudinal section through tapered die channel. 

(Note the use of the appropriate Rabinowitsch correction for power law liquids 
in wide-slit channels.) In flow through a slit die without taper, 

whence 

2L 77 4 n + 2  n 
hp = wnh2n+l ( 7) 

If the wide-slit die is vertically tapered, we consider the pressure drop d P  for 
an infinitely small length dl in terms of d h  and integrate with respect to h be- 
tween the limits of H I  and H2, remembering that dl = f ( d h ) ,  namely, 

dl = -dh cot 6 

2dl77 4 n +  2 n 
d P =  - 

h2n+1 ('7) 

Simplifying and taking the limits, we get 

Pressure Drop Through a Wide-Slit Die with Converging Sides 

This is an inverted fishtail die with bilaterally equal sideways taper angle 6 
and with constant height h. The width w reduces from the entrance width w1 
to the exit width w2. 

By trigonometry, as before, 

dw 
tan 4 = - - 

dl 
dw = -dl tan 4 
dl = -dw cot 4 

Starting from eq. (A), we consider the pressure drop d P  for an infinitely small 
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length dl in terms of dw and integrate with respect to w between the limits of 
w1 and w2, remembering that dl = f ( d w ) ,  namely, 

dl = -dw cot f#J 

d p  = 217h-(2n+l) ( Q e ) n d w c o t f # J w - n  

4 n + 2  n w2 

n - 1  w 1  

- - -h- (2n+l)  217 (Qy) cotf#Jwl-n I 
Simplifying and taking the limits, 

Pressure Drop Through an Inverted Fishtail Die with Lateral Taper 
Angle 4 and with a Simultaneous Vertical Taper Angle B 

By trigonometry, as before, 

d w  
tan f#J = - - 

dl 
d w  = -dl tan f#J 

Starting from eq. (A), we consider the pressure drop dP for an infinitely small 
length dl in terms of d h  and dw and integrate with respect to (i) h between the 
limits of H I  and H2, (ii) w between the limits of w1 and w2, remembering that 
dl may be expressed as f ( d h )  and  as f ( d w ) ,  namely, 

dl = -dh  cot 8 

and 

4 n + 2  n d P  = 217h-(2n+1) ( Q  7) ( -dh  cot 8)w-. ( -dw cot 4) 

and 

A P  = 217 cot 8 cot I$ 

Integration yields 

P = 217 cot 8 cot @ ( Q ~ 4n + 2 )"-&) ( - - $ - ) h - 2 n w 1 - n .  

Taking the limits and simplifying, we finally obtain 
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AP = 
n(n  - 1) 

X H2-Zn [ 1 - (E) H i  -2" ] w ~ l - "  [ 1 - (:)'"I (3 )  

Pressure Drop Through Dies Having the Shape of a Circular 
Truncated Right Cone 

The geometry of this die may be represented, mutatis mutandis, by a diagram 
similar to the one applicable to flow in a vertically tapered wide-slit die (see 
above). In the present case, however, h,  H I ,  and H2 are replaced by r ,  R1, and 
R2 respectively, and it is also understood that the taper angle 6 is operative around 
the entire circumference of the die. We can therefore write 

r = R 1  - 1 tan6 

tan 6 = (R1 - r ) / l  = -dr/dl 

dr = -dl tan 6 

dl = -dr cot 6. 
In circular dies, 

3n + 1 3n + 1 4Q 
+app = ~- +=- 

n n 7rR3' 
(Note: The inclusion of the Rabinowitsch correction distinguishes this treat- 
ment from that given by Cogswell and Lamb.) 

In flow through an untapered circular channel, 

APR 
2L 

7 = - -  

and 

If the circular untapered (cylindrical) die is modified by tapering so that it 
becomes convergent and takes the shape of a truncated right cone, one has to 
consider the pressure drop dP for an infinitely small length dl in terms of dr and 
integrate with respect to r between the limits of R1 and R2, remembering that 
dl = f ( d r ) ,  namely, 

dl = -dr cot 6 

Taking the limits and simplifying, 
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At this stage we wish to draw attention to the symbol q in the various equations. 
The viscosities in wide-slit dies and in dies with cylindrical and conical geometries 
are not, strictly speaking, identical. Rewriting them 7’’ and v’, respectively, one 
may take advantage of the empirical relationship between them which was used 
by Carley? namely, 

7’’ = 0.9117’ 

Having thus identified 7 in eqs. (B) and (4) with v’, we can therefore replace 
the 7 of eqs. (A) and (1) through (3) with 0.91 17’. This makes it possible to apply 
viscosity data obtained from rheometers with circular channels to the calculation 
of pressure drops in wide-slit dies. 

DISCUSSION 

It is clear that the method of calculating pressure drops may also be applied 
to dies in which the taper is curvilinear rather than rectilinear. Such dies are 
probably more expensive to produce, but they would have the considerable ad- 
vantage of giving rise to a minimum of flow disturbance. The kind of die that 
would probably be near ideal would have a conicocylindrical funnel shape such 
as may be generated by rotating an odd-power parabola around an axis which 
is practically parallel with the positive and negative branches of the parabola 
some sufficient distance r away from its point of inflexion; it is clear that r here 
defines the radius of the circular cross section of the resulting channel at any point 
between the entrance (R1) and the exit (R2). Such a die would minimize the flow 
discontinuity at its entrance where the flow transition from a broad and sluggish 
stream to a narrow and fast stream occurs. The optimum gradualization of this 
transition will have obvious benefits by enabling the extruder increase the 
pressure, and hence the output without exceeding the limit a t  which serious 
extrudate defects are encountered when ordinary dies are used. 

In order that the pressure drop in such an advanced die may be calculated, 
it would merely be necessary to determine the function of d l  in terms of d r ,  fol- 
lowed by substitution in an equation for dP based upon eq. (B) and integration 
between the limits of R1 and R2 in the same manner as that shown above. 

CONCLUSIONS 

A simple method for deriving flow equations for tapered dies is given. This 
requires the identification of the flow geometry, specifically whether the cross 
section is wide-slit or circular, and a knowledge of the function which defines 
the cross-sectional parameter(s) in terms of the channel length at any point along 
the principal flow axis between the die entrance and the die exit. Given such 
a flow equation, it is possible to optimize die design for maximum output at ac- 
ceptable extrudate quality. 
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